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Abstract—In this article, a new optimized node selection
algorithm is proposed for implementation of pinning control for
complex networks. This algorithm is inspired on the biological
control of berry borers by means of parasitoid agents. The
algorithm optimizes node selection using a criterion to ensure
searching asymptotic stability of the complex network. The
objective is to determine the optimal selection of nodes for
pinning control applications.

I. INTRODUCTION

The pinning control technique is used to determine a small
number of controlled nodes to satisfy behavioral objectives in
complex networks [1], [2]. An open problem related to this
topic is to determine how many and which nodes are needed
and where to place them in order to achieve the best desired
performance [3]. The nodes selection on complex networks for
pinning control can be optimized based on network topology,
coupling strength, synchronization time, convergence time,
energy consumption, key nodes to control, etc. Therefore
the pinning control technique can be optimized for multiple
criteria [4], [5]. The heuristic algorithms represent a viable
strategy to tackle this problem, especially in optimizing criteria
of large complex networks, for instance the following heuristic
algorithms can be considered: PSO [6], AMO [7], ABC [8],
BBO [9], WOA [10] and ACO [11]. However, the fundamental
problem of determining the number of pinning nodes, which
nodes and where to place them, implies nonlinear com-
binatorial optimization. When optimizing a multi-constraint
problem with heuristic optimizers, especially the ones based
on swarms, which depend strictly on a good reference of the
best performance, both in initialization and in the iterative
stage [12], often the swarm presents saturation at the limits of
the search space, or in other cases the agents will converge to
incorrect solutions [13]. The main contribution of this article
is the design of a new heuristic optimizer, hereafter referred to

as the Phymastichus Hypothenemus Algorithm (PHA), which
emulates the biologic control of the Hypothenemus hampei
berry borers by the Phymastichus coffea wasps. This algorithm
is developed to solve multi-constraint nonlinear combinatorial
optimization problems for pinning control applications of
complex networks, determining optimal nodes selection, and
achieving simultaneously stabilization using the V-stability
tool [14]. Simulation results are presented showing the perfor-
mance of this new proposed algorithm, and the obtained results
are also compared with the respective results using some other
heuristic algorithms.

This article is organized as follows. In Section II, we
introduce the pinning control for complex networks based
on the V-stability concept and other mathematical tools. In
Section III, we describe the proposed algorithm, and present
its principles and characteristics. In Section IV, we compare
PHA with other heuristic algorithms, for the stabilization of
complex networks with different characteristics. Finally, we
state the respective conclusions in Section V.

II. PRELIMINARIES

The preliminary concepts introduced in this section are
taken mainly from [15]. Consider a network of Nn nodes,
where each node is an Ns-dimensional dynamical system, as:

ẋi = fi(xi) +

Nn∑
j=1
j ̸=i

cijaijΓ(xj − xi), (1)

where xi = (xi,1, xi,2, . . . , xi,Ns
)T ∈ RNs , i = 1, 2, . . . , Nn,

are the state of the i-th node ni, fi : RNs → RNs repre-
sents the self-dynamics of ni, constants cij are the coupling
strengths between ni and nj , Γ ∈ RNs×Ns describes the
components linking for each pair of connected nodes xj

and xi, and aij are the entries of the Laplacian matrix
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A ∈ RNn×Nn , which represents the topological structure of
the network satisfying the following conditions: if there is a
connection between ni and nj , for i ̸= j, then aij = aji = 1;
otherwise, aij = aji = 0, for i ̸= j; and the diagonal elements
are defined by aii = −

∑Nn
j=1
j ̸=i

−di, i = 1, 2, · · · , Nn, where

di is the connection degree of ni.
The pinning control technique applies local state-feedback

to a small fraction of nodes in (1), which are named as
pinning nodes [16]. Assuming the diffusive condition ciiaii+∑Nn

j=1
j ̸=i

ciiaii = 0, i = 1, 2, · · · , Nn, the network (1) can be

rewritten in a compact controlled form as

ẋi = fi(xi) +

Nn∑
j=1

cijaijΓxj +Biui, (2)

where Bi ∈ RNs×l is the input matrix, ui ∈ RNs is the control
input, defined as

ui(xi) =

{
−Kixi i ∈ N
0 i /∈ N ,

(3)

where Ki ∈ Rl×Ns is the gain matrix of the i−th node i, with
ni ∈ N , and N is the set of pinning nodes, whose cardinality
Np satisfies 1 ≤ Np ≤ Nn [1]. Thus, the self-dynamics of the
controlled nodes become

ẋi = fi(xi)−BKixi, i = 1, 2, . . . , Np. (4)

In order to determine if the network (2) is locally asymptoti-
cally stable at the equilibrium point X, consider a continuously
differentiable Lyapunov function

VN (X) =

Nn∑
i=1

1

2
xT
i Pxi, P = PT > 0,

X = (xT
1 , · · · ,xT

N )T

(5)

such that

V̇N (X) =

Nn∑
i=1

xT
i P

fi(xi) +

Nn∑
j=1

cijaijΓxj −BKixi


V̇N (X) <

Nn∑
i=1

xT
i P

θiΓxi +

Nn∑
j=1

cijaijΓxj + kiΓxi


(6)

where ki ∈ R ≥ 0 is a bound for the control gain matrix Ki

and θi is the passivity degree of f(xi). Using the Kronecker
product ⊗ (6) is represented as,

V̇N (X) < XT (−Θ+G−K)⊗PΓX, (7)

where cijaij are the entries of G ∈ RNn×Nn , Θ =
diag(θ1, θ2, · · · , θNn), K = diag(k1, k2, · · · , kNn) and PΓ ≥
0. Then, according to [14], the network (1) is locally asymp-
totically stable about its equilibrium point if the closed-loop
characteristic matrix

M = −Θ+G−K (8)

is semi-negative definite. The stability so derived is called the
V-stability, and based on Assumption 1 in [14], this method
converts the original stability problem to the study of the
negativity property of (8), which strongly depends on the
selection of VN (X) (and of θi).

The optimization problem consists in the construction of the
main diagonal of the matrix K, whose entries ki are elements
of set N of fixed cardinality Np > Nλ+ , where Nλ+ is the
number of positive eigenvalues of the matrix M when K = 0,
such that, the number of pinned nodes cannot be less than Nλ+

[14], ki elements are optimized with any objective function
that depends on them. The optimization problem can then be
formulated as follows:

minimize f(U),
subject to U = {ui | i ∈ N} ,

max {Re {λ {M}}} < 0,

(9)

where the control law of the i−th node ni is defined as ui =
−kixi, such that

Kii =

{
ki i ∈ N ,

0 i /∈ N .
(10)

Let f(·), the selected objective function, be formulated as

Et0(U) =
1

2

∑
u∈U
∥u(t0)∥2 =

1

2

∑
i∈N
∥kixi(t0)∥2, (11)

where Et0(U) is the energy consumed on the pinning nodes
at time t0.

Remark 1: Taking into consideration V-stability (7) and that
energy is consumed only at the pinning nodes, the maximum
value of energy consumption is at time t0.

III. PHYMASTICHUS-HYPOTHENEMUS ALGORITHM

The general form of the optimization problem introduced in
the previous section consists in determining the value and the
position of the elements ki in the main diagonal of K, such
that the maximum eigenvalue of M is negative. Optimizing the
value of ki implies nonlinear optimization, while its position in
K corresponds to combinatorial optimization. In order to solve
this optimization problem, we will present a new developed
heuristic algorithm, named the Phymasticus-Hypothenemus
Algorithm (PHA). The PHA is inspired from the biological
control of the coffee berry borer (Hypothenemus hampei, Fig.
1(b)), by means of the parasitoid wasp (Phymastichus coffea,
Fig. 1(a)) [17]. Agent Hypothenemus optimizes the value of k
and agent Phymastichus optimizes its position on the diagonal
of K.

The multi-constraint nonlinear combinatorial optimization
problem and the proposed Phimastychus-Hypothenemus are
described as:



(a) (b)

Fig. 1. (a) Phymastichus coffea Lasalle, (b) Hypothenemus hampei Ferrari.

minimize f(U)
subject to U = {Hi,jxj | j ∈ Pi} ,

car(Pi) = Np,

max {Re {λ {M(Θ, G,K)}}} < 0,

Ki = diag(ki,1, · · · , ki,j , · · · , ki,Nn
),

ki,j =

{
Hi,j j ∈ Pi

0 j /∈ Pi,

Pi ⊆ SSP ,

Hi ⊆ SSH ,

(12)

where Pi ∈ NNp and Hi ∈ RNn are the i-th agents P. coffea
and H. hampei respectively, whose populations are defined
as P(t) = [P1(t)

T , P2(t)
T , · · · , PNa

(t)T ]T and H(t) =
[H1(t)

T , H2(t)
T , · · · , HNa

(t)T ]T , Na is the number of agents
for both populations, Np is the number of pinning nodes,
f(·) is the objective function to be optimized for the imple-
mentation of the pinning control, car(·) is the set cardinality,
SSP = [1, 2, · · · , Nn] is the search space of nodes (“coffee
tree”) for P. coffea agents, nj is the j−th node of the network,
SSH ∈ RNn is the search space for H. hampei agents; this
search space is bounded as lbi,j(t) ≤ SSHj

≤ ubi,j(t),
i ∈ [1, Na], lb(t) ∈ RNa×Nn being the lower bound and
ub(t) ∈ RNa×Nn the upper bound.

P. coffea lays two eggs per host (usually one male and one
female) and the best situation for the biological control of H.
hampei is the birth of a female and a male P. coffea, such that
a single male P. coffea can fertilize multiple females; however,
it needs a female to bore the host abdomen to emerge [17].
The parasitization process generates the following sub-types
of agents and their fitness:

Case 1: Birth of only females,

f̃i(t) =

{
fi(t) if t = 1 ∨ fi(t) < f̃i(t− 1)

f̃i(t− 1) else,
(13)

P̃i(t) =

{
Pi(t) if t = 1 ∨ fi(t) < f̃i(t− 1)

P̃i(t− 1) else,
(14)

H̃i(t) =

{
Hi(t) if t = 1 ∨ fi(t) < f̃i(t− 1)

H̃i(t− 1) else,
(15)

where f̃i(t) is the fitness of the symbiotic relationship between
the best local values P̃i(t) and H̃i(t).

Case 2: Birth of a female and a male,

f̂(t) =

{
f̃min(t) if t = 1 ∨ f̃min(t) < f̂(t− 1)

f̂(t− 1) else,
(16)

P̂ (t) =

{
P̃min(t) if t = 1 ∨ f̃min(t) < f̂(t− 1)

P̂ (t− 1) else,
(17)

Ĥ(t) =

{
H̃min(t) if t = 1 ∨ f̃min(t) < f̂(t− 1)

Ĥ(t− 1) else,
(18)

where

P̃min(t), H̃min(t)→ f̃min(t)

f̃min(t) = min{f̃1(t), f̃2(t), · · · , f̃Na(t)},
(19)

f̂i(t) is the fitness of the symbiotic relationship between the
best global values P̂ (t) and Ĥ(t) and v is a Na × 1 vector
of ones. If the fitness fi(t) > f̃i(t), then there are no births
involving at least one female.

The wasp visits (Fig. 1(a)) different coffee berries in order to
search for H. hampei to parasitize. The visits are memorized
on the new wasp generations by inheritance of the decision
vectors w(t), which determine the frequency of node visits.
The i−th decision vector wi(t) ∈ R1×Nn is defined by:

wi,j(t+ 1) =



1 if t = 1

wi,j(t) + 1 if f̃i(t) < f̃i(t− 1)

∧j ∈ P̃i(t)

wi,j(t) + 1 if f̂(t) < f̂(t− 1)

∧i ∈ Nr(t) ∧ j ∈ P̂ (t)

wi,j(t) else,

(20)

where Nr is a set of uniformly distributed random nodes
(without repetition).

The j−th node selected to be pinned by the i−th agent
Pi(t) is

Pi,j(t) = Nn + 1−
Nn∑
k=1

S3(µ−Wi,k(t)), (21)

where j = 1, 2, . . . , Np, Wi(t) ∈ R1×Nn is a cumulative sum
of average successes of the decision vector wi(t), given by

Wi(t) =

[
wi,j(t)∑
wi(t)

,

2∑
j=1

wi,j(t)∑
wi(t)

, · · · ,
Nn∑
j=1

wi,j(t)∑
wi(t)

]
,

(22)

S3(·) is a step function defined as: with x = (a − b) | a ≤
b, (a, b) ∈ R,

S3(x) =
1

1 + e(x−ϵ)·∞ =


0; x > 0,

1; x < 0,

1; x = 0,

(23)

where ϵ is the epsilon machine “eps” [18], and µ ∈ [0, 1] is
a random number with uniform distribution. If the node nj



has been selected, its probability wi,j(t) during iteration t is
0, such that the node nj is not selected again by the same P.
coffea wasp.

Fig. 2. The biological inspiration of the borer functions, H. hampei path
towards the coffee berry apex.

In nature, the H. hampei drills berries at or near the apex,
the softest area of the coffee fruit (Fig.2). The borer functions
emulate this behavior by reducing the search region SSH

towards the best agents Ĥ . The borer functions are defined
as

ub(t) =

Ĥ −
(
Ĥ − u0b+ ζ|Ĥ|

)
e

(−γt
Nt

)
+ ζ|Ĥ|

⊗ v,

(24)

lb(t) =

Ĥ +
(
l0b− Ĥ + ζ|Ĥ|

)
e

(−γt
Nt

)
− ζ|Ĥ|

⊗ v,

(25)

where u0b ∈ R1×Nn and l0b ∈ R1×Nn are the initial upper
and lower bounds respectively, ζ is the compression gain, Nt

is the interactions number and γ is a iteration coefficient.
The behavior of the H(t) population is defined as

∆(t+ 1) = ∆(t) + ρ1η1 ⊙ (H̃(t)−H(t))

+ρ2η2 ⊙ (Ĥ(t)⊗ v −H(t)),
(26)

uc(t) = S3(
ub(t)−H(t)− ρ3∆(t))⊙ ub(t) (27)

lc(t) = S4(
lb(t)−H(t)− ρ3∆(t))⊙ lb(t) (28)

cc(t) =S3(
lb(t)−H(t)− ρ3∆(t))⊙ S4(

ub(t)

−H(t)− ρ3∆(t))⊙ (H(t) + ρ3∆(t))
(29)

H(t) =

{
(u0b+ (l0b− u0b)⊗ v)⊙ η1 if t = 1
uc(t− 1) + cc(t− 1) + lc(t− 1) else,

(30)

where ∆(t) is the position increment of the population H(t),
η1 ∈ RNa×Nn and η2 ∈ RNa×Nn are uniformly distributed
random matrices, ρ1 is the influence constant for the births of
two females, ρ2 is the influence constant for the births of one
female and one male, ρ3 is the inertial constant, uc(t), cc(t)
and lc(t) are the upper, center and lower clipping functions
respectively, which prevent agents H. hampei from exceeding
the search space, ⊙ is the Hadamard product [19], and S4 is a
step function defined as, with x = (a− b) | a ≥ b, (a, b) ∈ R,

S4(x) = 1− 1

1 + e(x+ϵ)·∞ =


1 x > 0

0 x < 0

1 x = 0.

(31)

Algorithm 1 and Fig. 3 present the pseudo code and the
flow chart of the proposed Phimastychus-Hypothenemus Al-
gorithm, respectively. Some stopping criteria for the algorithm
are: number of iterations, error tolerances and null variations
of the decision matrix ω. Starting with Np values close to Nn

and large control gains K increases the possibility of starting
with healthy populations (seeds of good initialization).

Algorithm 1 Phimastychus-Hypothenemus Algorithm.
Data: Nn, Np, Na, l0b,u0b, ζ, γ, ρ1, ρ2 and ρ3.
Result: P̂ : Best agent P. coffea, Ĥ : Best agent H. hampei,

f̂ : Best fitness.
1: Initialization:
2: t← 1
3: (P, P̃,H, H̃,∆)← [0]Na×N

4: (f , f̃)← [0]Na×1

5: w ← [1]Na×N

6: while t <= Nt do
7: H(t)← by the Eq.(30)
8: for all i ∈ [1, Na] do
9: ω ← wi(t) save to decision vector

10: for all j ∈ [1, Np] do
11: Pi,j(t)← by the Eq.(21)
12: wi,Pi,j

(t)← 0
13: end for
14: wi(t)← ω update the decision vector
15: fi(t)← (12) is evaluated
16: P̃i(t)← by the Eq.(14)
17: H̃i(t)← by the Eq.(15)
18: w(t+ 1)← by the Eq.(20)
19: f̃i(t)← by the Eq.(13)
20: end for
21: P̂ (t)← by the Eq.(17)
22: Ĥ(t)← by the Eq.(18)
23: w(t+ 1)← by the Eq.(20)
24: f̂ ← by the Eq.(16)
25: t = t+ 1
26: end while

IV. SIMULATIONS RESULTS

The following experiments are carried out to compare the
performances of the proposed PHA algorithm with other



Fig. 3. The flow chart of PHA.

CN CN1 CN2 CN3

Nn 30 40 60
Ne 224 383 876
m 5 21 33
k 14.93 19.15 29.2
min{k} 10 12 19
max{k} 20 24 38
c 9.53 -11.35 -4.64

Ic
[
−2, 20

] [
−40
20

] [
−24
16

]
θ 45.93 -6.31 -7.69

Iθ

[
−4
80

] [
−23
8

] [
−56
35

]
x0

[
−0.01
2.02

] [
2.02
2.21

] 23.8326
31.85


Ix0

[
−8
9

] [
−2
7

] [
−23
80

]
SS

[
1E + 2
1E + 7

] [
1E + 4
1E + 6

] [
1E + 7
1E + 9

]
Np 15 37 54

TABLE I
COMPLEX NETWORK DATA.

heuristic optimization algorithms, such as: ALO [20], TLBO
[21], GWO [22], AMO [7], PSO [6], ABC [8], GSK [23],
BBO [9], WOA [10] and ACO [11]. The parameter settings
used in the simulations for these algorithms are the follow-
ing: ALO, WOA and TLBO: no special parameters; GWO:
a = 2 − 2(g/maxg); AMO: 5 animals in each group; PSO:
ω = 0.6, and c1 = c2 = 2; ABC: abandonment criteria = 25;
GSK: P = 0.1, kf = 0.5, kr = 0.9, and K = 10; BBO:
habitat modification probability = 1, immigration probability
bounds per gene = [0,1], step size for numerical integration of
probabilities = 1, maximum immigration and migration rates
for each island = 1, and mutation probability = 0.1; ACO:
initial pheromone value = 1E−6, pheromone update constant
= 20, exploration constant = 1, global pheromone decay rate =

CN F (x) f(x) G(x) t/50
ALO

CN1 3.7E + 71 1.4E + 16 4.4 19.0
CN2 1.3E + 73 1.5E + 14 34.0 32.0
CN3 2.3E + 73 4.2E + 22 47.0 46.0

TLBO
CN1 8.3E + 71 9.7E + 15 8.6 2.3
CN2 2.6E + 73 1.4E + 14 51.0 3.3
CN3 3.9E + 73 4.0E + 22 62.0 6.0

GWO
CN1 8.0E + 71 8.9E + 15 7.6 1.0
CN2 2.3E + 73 1.2E + 14 47 1.7
CN3 3.4E + 73 3.1E + 22 58.0 3.0

AMO
CN1 2.2E + 15 2.2E + 15 0 2.7
CN2 1.4E + 72 2.0E + 14 11.0 4.9
CN3 4.7E + 72 4.7E + 22 21.0 8.1

PSO
CN1 2.8E + 72 1.4E + 16 17.0 0.85
CN2 33E + 73 1.6E + 14 57.0 1.3
CN3 4.7E + 73 4.8E + 22 69.0 2.5

ABC
CN1 1.4E + 70 1.7E + 13 0.33 0.57
CN2 4.4E + 71 4.8E + 11 5.3 1.1
CN3 2.2E + 73 1.2E + 19 45.0 2.0

GSK
CN1 6.1E + 72 1.2E + 16 24.0 6.2
CN2 4.2E + 73 1.5E + 14 65.0 25.0
CN3 4.8E + 73 4.3E + 22 69.0 67.0

BBO
CN1 5.0E + 70 1.7E + 16 1.2 2.4
CN2 2.4E + 72 1.6E + 14 13.0 5.0
CN3 3.5E + 72 4.1E + 22 17.0 7.8

WOA
CN1 1.6E + 72 1.1E + 16 12.0 0.92
CN2 2.4E + 73 1.4E + 14 49 1.5
CN3 3.5E + 73 4.2E + 22 58.0 2.8

ACO
CN1 8.2E + 73 4.9E + 13 91.0 1.2
CN2 1.7E + 74 4.4E + 12 130 2.3
CN3 1.8E + 74 1.6E + 21 140.0 7.1

PHA
CN1 8.3E + 15 8.3E + 15 0 1.2
CN2 7.9E + 13 7.9E + 13 0 2.4
CN3 3.3E + 22 3.3E + 22 0 4.4

TABLE II
SIMULATIONS RESULTS OF ALO, TLBO, GWO, AMO, PSO, ABC, GSK,

BBO, WOA, ACO AND PHA.

0.9, local pheromone decay rate = 0.5, pheromone sensitivity
= 1 and visibility sensitivity = 5; PHA: ρ1 = 0.5, ρ2 = 0.6,
ρ3 = 0.7, ζ = 0.02 and γ = 10; for all algorithms the
population size is 50 and the iterations number is 500.

The tests consist in minimizing the objective function (12)
for three different complex networks, whose characteristics are
presented in Table I, where Ne is the number of edges, m is
the number of positive eigenvalues in (8), k is the average
connection degree, c is the average coupling strength, θ is the
average passivity degree, x0 is the average initial condition,
Ic,θ,x0 is the distribution interval and SS is the search space
for bounds of the control gains. The dimensions of the search
space for each algorithm are D = 2Np, where the dimensions
from 1 to NP represent the set of nodes selected to apply
pinning control, and the other half is used for bounds of control
gains.



The penalty function is defined as F (x) = f(x) + qG(x),
where F (x) indicates the new objective function to be opti-
mized, q is a penalty parameter for G(x) = max [0, g(x)]β , β
is 1 or 2, f(x) and g(x) are respectively the objective function
and its constraint previously defined in (12).

The simulation runs on a computer with the following
characteristics: 16.0 GB installed RAM (15.8 GB usable),
11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz 2.69 GHz
Processor, and MATLAB R2022a. Each simulation for every
complex network runs 50 times independently, whose average
results are displayed in Table II, where blue numbers indicate
best performance with guaranteed network stability and red
numbers generate positive definite matrix M . The complexity
O of each algorithm is represented by the processing time
t/50samples (seconds). From the comparison results obtained via
simulations, it can be seen that the proposed algorithm almost
always fulfill stability conditions (8), mainly for large size
complex networks, while some of the other tested algorithms
may not fulfill (8). For small networks, the AMO algorithm
usually has better performance than the PHA, because, in
animal migration, the agents do not occupy the same place,
thus avoiding repeating nodes. However, this advantage disap-
pears for large networks or networks with a large number of
combinations of pinning nodes. The closer Np is to Nn, the
easier it is to find stability in the network, since almost all
nodes are controlled, however, this implies a high number of
permutations for the heuristic algorithms of fixed and ordered
dimensions, producing poor performance or edge locks, which
causes most heuristic algorithms not to find sets of control
gains that guarantee M ≤ 0.

V. CONCLUSIONS

The PHA algorithm was developed to solve a specific
problem: the optimal node selection on pinning control of
complex networks, which, as mentioned, implies nonlinear
combinatorial optimization with multi-criteria. The set of fixed
cardinality pinning nodes is proposed arbitrarily by the user,
and when this cardinality is close to the total number of
nodes in the network it is easier to guarantee the network
stability, however, this implies a high number of permutations
for the heuristic algorithms of dimensions fixed and ordered,
producing poor performance or border locks, while the PHA
algorithm agents interpret the permutations as combinations,
drastically reducing the computational complexity, avoiding
the repetition of nodes. Another important aspect in the PHA
algorithm is that with the borer functions, agents are encour-
aged to visit new search areas, giving time to make decisions in
safe areas. Comparing the PHA algorithm with other heuristic
algorithms is possible if and only if the optimization problems
in question consist of the same problems for which the PHA
algorithm was developed. For the above, the PHA algorithm is
a useful tool for pinning control of complex networks; mainly
when the network size is considerably large. This algorithm
can be applied, regardless of the network size, the dynamics
of the nodes, the topology of the network, and the strength
of its connections. For future work, it is interesting to study

the case of a PHA algorithm with the minimum number of
pinning nodes, which can guarantee stabilization for complex
networks.

REFERENCES

[1] G. Chen, “Pinning control and synchronization on complex dynamical
networks,” International Journal of Control, Automation and Systems,
vol. 12, pp. 221–230, 2014.

[2] F. Sorrentino, M. Di Bernardo, F. Garofalo, and G. Chen, “Controllabil-
ity of complex networks via pinning,” Physical Review E, vol. 75, pp.
046 103–5, 2007.

[3] G. Chen, “Problems and challenges in control theory under complex
dynamical network environments,” Acta Automatica Sinica, vol. 39, pp.
312–321, 2013.

[4] J. Ding, C. Wen, and G. Li, “Key node selection in minimum-cost
control of complex networks,” Physica A: Statistical Mechanics and
its Applications, vol. 486, pp. 251–261, 2017.

[5] G. Yan, J. Ren, Y.-C. Lai, C.-H. Lai, and B. Li, “Controlling complex
networks: How much energy is needed?” Physical Review Letters, vol.
108, no. 21, p. 218703, 2012.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” vol. 4, pp.
1942–1948, 1995.

[7] X. Li, J. Zhang, and M. Yin, “Animal migration optimization: An
optimization algorithm inspired by animal migration behavior,” Neural
Computing and Applications, vol. 24, 06 2013.

[8] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (abc) algorithm,”
Journal of Global Optimization, vol. 39, pp. 459–471, 11 2007.

[9] D. Simon, “Biogeography-based optimization,” IEEE Transactions on
Evolutionary Computation, vol. 12, no. 6, pp. 702–713, 2008.

[10] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances
in Engineering Software, vol. 95, pp. 51–67, 2016.

[11] M. Dorigo, V. Maniezzo, and A. Colorni., “Ant system: optimization by
a colony of cooperating agents,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996.

[12] J. Aghaei, K. M. Muttaqi, A. Azizivahed, and M. Gitizadeh, Distribution
expansion planning considering reliability and security of energy using
modified PSO (Particle Swarm Optimization) algorithm. Elsevier, 2014,
vol. 65.

[13] D.-w. G. Yong Zhang and J. hua Zhang, Robot path planning in under-
certain environment using multi-objetive particle swarm optimization.
Neurocomputing vol 103, 2012.

[14] J. Xiang and G. Chen, “On the V-stability of complex dynamical
networks,” IFAC, the International Federation of Automatic Control,
vol. 43, pp. 1049–1057, 2007.

[15] G. Chen, X. Wang, and X. Li, Fundamentals of complex networks:
models, structures and dynamics. John Wiley & Sons, 2014.

[16] H. Su and X. Wang, Pinning control of complex networked systems: Syn-
chronization, consensus and flocking of networked systems via pinning.
Springer Science & Business Media, 2013.

[17] J. C. Espinoza, “The biology of phymastichus coffea lasalle (hy-
menoptera: Eulophidae) under field conditions,” Elsevier, Biological
Control, vol. 49, pp. 227–233, 2009.

[18] W. J. Cody, “Algorithm 665: Machar: A subroutine to dynamically
determined machine parameters,” ACM Trans. Math. Softw., vol. 14,
no. 4, p. 303–311, 1988.

[19] E. Million, “The hadamard product, introduction and basic results,”
2007.

[20] S. Mirjalili, “The ant lion optimizer,” Advances in Engineering Software,
vol. 83, pp. 80–98, 2015.

[21] R. R. V., S. V. J., and V. D.P., “Teaching–learning-based optimization:
An optimization method for continuous non-linear large scale problems,”
Information Sciences, vol. 183, no. 1, pp. 1–15, 2012.

[22] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.

[23] A. Wagdy, A. Hadi, and A. Khater, “Gaining-sharing knowledge based
algorithm for solving optimization problems: a novel nature-inspired
algorithm,” International Journal of Machine Learning and Cybernetics,
vol. 11, 07 2020.


