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Abstract- This study presents an algorithm for unsupervised 

beat-to-beat detection of the J-wave of the ballistocardiogram 

(BCG) in records of both lying (bed) and seated (chair) persons. 

The algorithm is based on the continuous wavelet transform 

(CWT) with splines, which offers the advantage of using a wide 

range of scales and the reduction of noise and mechanical 

interference. For J-wave detection, the most prominent 

negative modulus of the CWT is detected using adaptive time 

windows (the negative modulus provides more information 

about the location of the J-wave), and then a confirmation is 

performed from temporal and amplitude parameters. Seven 

records from a chair database and fifteen records from a bed 

database were used to evaluate the algorithm. To assess the J-

wave detection, the Bland Altman test was used, measuring the 

heart rate (HR) from the ECG as a reference and considering a 

95% confidence interval (±2 SD). For the bed database the 

mean error was -0.03 beats/min with a confidence interval of 

±3.87 and for the chair database the mean error was -0.05 

beats/min with a confidence interval of ±3.48 beats/min. Results 

satisfied the standards for HR meters recommended by the 

Association for the Advancement of Medical Instrumentation 

(AAMI).  
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I.   INTRODUCTION 

There is a growing demand for monitoring technologies 

in non-hospital environments (home monitoring) for vital 

parameters such as heart rate (HR), blood pressure, 

respiratory rate, etc. This trend is an important step towards 

the prevention, prediction and treatment of cardiovascular 

diseases [1]. Advances in sensor technology in terms of cost 

and size have renewed the interest and prominence of the 

ballistocardiogram (BCG), different continuous monitoring 

systems have been proposed by embedding sensors of 

different types in everyday objects such as office chairs [2], 

[3], wheelchairs [4], beds [5] and weighing scales [6].   

The BCG is a record of the micromovements of the body 

produced by the recoil forces generated in each heartbeat due 

to changes in the center of mass by the rapid acceleration of 

the blood as it is ejected through the vascular tree. These 

forces can be measured as displacement, velocity, or 

acceleration in three different geometric axes: head-to-foot 

(longitudinal or vertical), dorsoventral (transverse or antero-

posterior) and lateral (left-right) [7].  Fig. 1 shows the typical 

BCG with letters identifying each of its parts [8]. The J-wave 

is the highest amplitude positive wave after the cardiac 

cycle, which is frequently used as a reference.  

A major challenge in the development of algorithms for 

automatic detection of BCG waves is that the morphology 

varies between subjects, measurement device and the 

measurement axis [9]. Therefore, several automatic 

algorithms for J-wave and thus HR detection have been 

proposed, most of them focusing on single-position, single-

axis BCG recordings, also because few public databases 

exist. 

 
Fig.1. Typical form of the normal ballistocardiogram [8]. 
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Techniques vary from algorithms based on the signal 

envelope [10], filters [11], Continuous Wavelet Transform 

(CWT) [12], [13], Discrete Wavelet Transform (DWT) [14], 

Multiresolution Analysis of the Maximal Overlap Discrete 

Wavelet Transform (MODWT-MRA) [15] and adaptive beat 

shape modeling [16]. Methods based on wavelet analysis 

have proven to be successful regardless of the type of sensors 

or experimental setups [17], in addition to being effective for 

processing nonlinear and non-stationary physiological 

signals [18], [19].  

In this work we propose an algorithm based on CWT 

with splines for the J-wave detection of the BCG regardless 

of the type of sensor or the measurement axis. To assess its 

performance, two databases consisting in 7 records of chair-

based BCG [9] and 15 records of bed-based BCG [20] were 

used. This algorithm is based on a previous algorithm 

presented in [12] with important improvements in the 

detection methodology, to obtain the necessary generality 

for its operation in either BCG database. 

II.  MATERIALS AND METHODS 
 

A. BCG and ECG Datasets 

The first database (Chair) used was acquired by a 

piezoelectric sensor attached to the bottom side of the seat of 

a chair, the BCG was measured over the longitudinal axis, 

the ECG (lead 1) was acquired simultaneously and both 

signals were digitized at a sampling rate of 1 kHz and band 

limited between 0.5–20 Hz and 0.16–100 Hz respectively, as 

referred in [9]. General subjects information is summarized 

in Table 1.  

TABLE I 

DATABASE CHARACTERISTICS 

Database  Subjects Sex Age Weight [Kg] Height [m] 

Chair 7 5 M & 2 F 33±6 67 to 87  1.65 to 1.75  

Bed 15 8 M & 7 F 27±5  48 to 94  1.53 to 1.97  

 

In the second database used (Bed) published in 2020 

[20], the BCG was acquired on the transverse axis through a 

set of 4 EMFi sensors placed centrally on the base of a bed 

and 4 load cells positioned under the bedposts. The signals 

obtained from each sensor were visually analyzed 

determining greater correspondence of the BCG with the 

EMFi sensor “Film 0”. From this database of 40 subjects, 15 

subjects were chosen, having similar age, weight, and height 

ranges to those of the first database. Each of the signals was 

band limited between 0.3–24 Hz, simultaneously obtaining 

the ECG (lead 3) band limited between 0.5–40 Hz with the 

same sampling rate of 1 kHz. 

B. Signal preprocessing 

The two datasets were analyzed using Matlab® R2021b, 
and prior to detection BCG databases were digital bandpass 
filtered with a FIR zero-phase filter between 0.5–25 Hz of 
150th order using Hamming window, to reduce artifacts and 

to ensure that both databases had the same bandwidth. In 
addition, the bed database was inverted due to the 
positioning of the sensor with respect to the subjects’ bodies.  

 
C. J-wave detection using CWT with splines 

The processing tool used for the development of the 
algorithm was the continuous wavelet transform (CWT) [21] 
which is defined by the equation (1). 
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The CWT consists of a convolution integral between a 

signal x(t) and a wavelet function, which contains two 
parameters: the translation parameter b and the scale 
parameter a. Its behavior is to act as a bandpass filter, whose 
cutoff frequencies are related to the scaling factor a, 

restricted to discrete values over the sequence 2� (j=1, 2…), 
which sometimes can limit the analysis. In this work, we use 
the B-splines functions to evaluate the CWT at any integer 
scale [22], where its representation is equivalent to a 
polynomial spline function expressed as  
 

������	, �, �	 = � ��� ↑"∗ #"$% ∗ �$&'$%'( ∗ )*
+ ∈ -
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where �� ↑" ��	 represents the upsampling of the B-spline 
coefficients of the wavelet function expanded by a factor of 

m, #"
$% refers to a cascade of (n2 – 1) moving sum filters with 

the order (m-1) and with a k0 offset ensuring its symmetry, 

�$&'$%'( is the representation of the B-spline convolution of 
degree (n1+n2+1) between the analyzed function and the 

wavelet function, and )��	′/ are the B-splines coefficients 
of the analyzed function.  
 

The approach of this algorithm follows the structure 
reported in [12] with some important improvements. First, a 
mother wavelet function equivalent to the first derivative of 
a fourth-order cubic B-spline considering scale 5 (CWT5) 
with cutoff frequencies of 46–155 Hz is used, to improve the 
characteristics of the waveform. Secondly, to achieve the 
analysis of two different databases, detection focused on 

finding the lowest negative peak (�$) instead of the positive 

��0	, because it was found to be the most consistent point in 

the CWT for the J-wave detection (Fig. 2). Finally, adaptive 
search windows for minimal changes in HR, point correction 
by performing forward and backward searches, and the 
addition of new validation points were implemented, to 
avoid false negative detection and improve J-wave detection. 

 

 The overall detection of the J-wave peak (10) is only 

accepted as true if the local minima  �$ and the local 

maxima �0  exceed the adaptive thresholds and have a 

reasonable duration. The operation of the algorithm is 
divided into two stages: a recognition stage and decision 
stage, as described below. 

 
 



 
 

Fig. 2. Comparison of BCG wave and ���2 for the J-wave peak detection 

with Wp, Wn and zero crossing. 

 
1) Recognition stage  

This stage as described in [12], defines the first four J 

waves, corresponding to 10�1: 4	. The starting point for the 

search window corresponds to the refractory period ‘Start’ 

which can be variable for each record. Then in the next 2 s 

the maximum �0 and the minimum �$ are searched 

establishing the positive threshold �5� = 6(�7	 and the 

negative threshold �8� = 69�$	 where the constants 6( and 

69 are experimental values corresponding to 0.6 and 0.65 

respectively. Once defined, a window search is initiated for 

the maxima �0, minima �$ and zero-crossings that are 

greater than Pt and less than Nt. Finally, the interval 11�1: 3	 

and the mean interval 11;< (1:3) are calculated to define the 

initial search point (SP = �0= > 6? ∗ 11;<(1:3)) for the next 

10, with an experimental value of 6?= 0.71.   

2) Decision stage 

At this stage, we seek to find the next  10 points until the 

condition that the boundary �@A = B5 > 6= ∗ 11;<�4: n	* 

exceeds the length of ���2, where 6= was set to 0.75. 

For a better understanding of this stage, the procedure 

will be divided into four steps: 

2.1 Search window: once the previous 10 is detected, 

the search window is limited in order not to detect 
erroneous points, the initial value is updated with 
(3) and the final value is determined with (4). 

 

B5 = �0 > 0.66 ∗ 11;<�G	            �3	 

 

11�G − 1	 H 1.06 x 11;<9            �4	             
 

Where 11�G − 1	 refers to the previous JJ interval 

and 11;<9 to the average of the two previous 

intervals  �11�n − 2: 11�n − 1	 . 
If the condition (4) is met, then a longer window 

limit (0.52 x 11;<�G	)  is considered and if it is not, 

a normal window limit (0.37 x 11;<�G	) is used. 
With this, an adaptive window is obtained 
according to the evolution of the subject’s HR.  

2.2 Detection: To determine the 10 point, first the 

minimum �$ is detected in the search window, then 

�0 and the zero crossing between them are 

searched (Fig. 2). Sometimes when the signals 

present more than one crossing, the �0 with the 

highest amplitude is chosen and a short search is 
made to find the correct point. 

2.3  10 evaluation: The candidate 10( is evaluated under 

two main criteria: amplitude and time. To make 
sure that it is within the average respect to the other 
points, we first calculate the negative interval (CNI) 
which corresponds to the difference between the 

�$ and the previous JJ interval (�$ − 1�G − 1	) 
and then applied the eqs. (5) and (6): 

 

�8J H 1.074 ∗ 11�G − 1	            �5	 
 

M�$9 N 0.31 ∗  M�$(    M�09 H 0.4 ∗  M�0�G − 1	 

 �0( − �09 H B5O                �6	 

 
where the prefix A refers to the amplitude of the 
point analyzed and the SPR factor is variable with a 
standard value of 240. If (5) is satisfied, a backward 

search of 10( is performed to find another possible 

point (109). This new point is validated with (6) and 

if it is true the value of 10( is updated.  If this is not 

fulfilled, 10( is evaluated through the eqs. (7) and 

(8). 
 

�8J N 1.07 ∗ 11�G − 1	 

       M�( H 0.85 ∗  M�$;<�G − 3: G	      �7	  
  

�8J9 N 1.22 ∗ 11;<9   
MQRS� 109* H MQRS�10(* 

M�09 H 0.81 ∗ M�0(            �8	 

 

Where M�$;< equals the average of the amplitudes 

of �$ and MQRS  equals the amplitude of the BCG. 

If (7) and (8) are satisfied a new point 109 beyond 

the candidate 10( is found and its values are 

updated, otherwise the value of  10( is retained. 

 

The final evaluation to confirm or reject the 10( 

position is performed with (9). The experimental 
value of the minimum negative threshold (umn) 
was considered as a variable factor with a standard 
of 0.76, and the maximum threshold (umx) was 
experimentally set to 1.32. Both factors play a very 
important role in determining the minimum and 

maximum percentage of the 11;< as a decisive 
factor. 

11�G	 H #�G ∗ J81 N #� ∗ J81 

M�0�G	 H  0.34 ∗ 5�                �9	 



In (9), the interval 11�G	 is obtained from the 

difference of the 10 found and the previous, and the 

INJ factor is obtained by averaging the last five JJ 
intervals (except for the first five, for which the last 
one is used).  
 
If (9) is false, two more search windows are 

performed. In the first �B5 − 60 ms: B5 >
220 ms	 we search for 10? which is validated with 

(10). If it is rejected, we perform the last search 
�B5 > 70 ms: B5 > 150 ms	 finding 10= which is 

verified through (11). 
 

11�G	 H #�G ∗ J81 N #� ∗ J81 

M�$? N 0.55 ∗ 8�            �10	 
 

 11�G	 H #�G ∗ J81 N #� ∗ J81   �11	 
 

2.4 Update: Once the 10 point is confirmed the HR is 

obtained, the maximum threshold (5� = �0.6 ∗
5�	 > �0.4 ∗ ��	), the minimum threshold (8� =
�0.6 ∗ 8�	 > �0.4 ∗ ��	) and the different 

11;<(4:n) used in the algorithm are updated.  
 

The flowchart of the entire algorithm is shown in Fig. 3. 

 

                  Fig. 3. Flowchart for J-wave detection. 

 

III. RESULTS AND DISCUSSION  
 

To test the algorithm, 22 BCG recordings were used 

with a duration between 60–100 s for 7 chair recordings and 

5–7 min for 15 bed recordings. 

The results of the detection performance are presented 

in tables II and III, where sensitivity (Se) and positive 

predictivity (P+) were calculated as a function of the number 

of TP (true positive detections), FN (false negative 

detections) and FP (false positive misdetections). In 

addition, with the aim of quantitatively validating whether 

the detected points truly corresponded to the J-wave, the 

Bland-Altman statistical test [23] was carried out in which 

HR from R-R intervals of the ECG (measured with Alvarado 

et. al. algorithm [24]) was taken as a reference for the HR 

obtained from J-J intervals. For the bed database, the results 

were obtained considering approximately 100 s to match the 

acquisition time of the chair database. 

The algorithm’s performance for both databases is 

shown in the Bland-Altman plots in Fig. 4. And it can be 

observed that most results fall within the 95% confidence 

interval (CI) corresponding to ±2 SD. For chair database 

(Fig. 4a) the CI was ± 3.48 beats/min with a mean error of    

-0.05 beats/min and for bed database (Fig. 4b), the CI was    

±3.87 beats/min with a mean error of -0.03 beats/min 

(omitting false negatives), demonstrating compliance with 

the accuracy limits (±5 beats/min) for the HR measurement 

standard established by the Association for the Advancement 

of Medical Instrumentation (AAMI) [25]. 

  

  

Fig. 4. Bland Altman plots of the average difference of the HR from ECG                                   
and the HR from BCG. a) Results for chair database. b) Results of 100 s of 

bed data base. 

a) 

b) 



A. Results for Jp Detection (Bed) 

In this database, 80 FP and 8 FN were detected out of a 

total of 6650 beats, having averages of Se= 99.89%, P+= 

98.90% and TP=98.79%. As can be noted, one of the 

advantages of this algorithm is that by using the average of 

the previously detected points, the probability of early or late 

detection of a J-wave is reduced. The results for each record 

analyzed from this database are summarized in Table II. 

TABLE II. 
 JP DETECTION PERFORMANCE  FOR BED DATABASE  

BED DATABASE RESULTS 

ID TP FP FN Se % P+ % TP% 

X1001 206 2 0 100.00% 99.04% 99.04% 

X1004 406 2 0 100.00% 99.51% 99.51% 

X1005 536 31 1 99.81% 94.53% 94.37% 

X1006 508 0 0 100.00% 100.00% 100.00% 

X1007 451 2 0 100.00% 99.56% 99.56% 

X1008 356 1 0 100.00% 99.72% 99.72% 

X1009 507 12 2 99.61% 97.69% 97.31% 

X1022 377 5 1 99.74% 98.69% 98.43% 

X1023 367 0 0 100.00% 100.00% 100.00% 

X1027 372 5 0 100.00% 98.67% 98.67% 

X1031 409 4 1 99.76% 99.03% 98.79% 

X1032 529 3 0 100.00% 99.44% 99.44% 

X1040 613 6 2 99.67% 99.03% 98.71% 

X1044 496 6 1 99.80% 98.79% 98.59% 

X1046 435 1 0 100.00% 99.77% 99.77% 

 

B. Results for Jp Detection (Chair)  

The number of total beats detected for this database was 

779 with 6 FP and 0 FN. In this case, the achieved averages 

were Se= 100%, P+= 99.24% and TP=99.24%. In 

comparison with [12], similar results were obtained with a 

total of +4 beats. For this database, no false negatives were 

found because the presence of the J wave in relation to others 

was evident, something that did not occur in the bed 

database, since waves with similar characteristics were 

detected. In addition, the subjects had a more constant HR 

making their detection more predictable due to the short 

recordings, compared to the bed database. 

TABLE III.  
JP DETECTION PERFORMANCE  FOR CHAIR DATABASE  

CHAIR DATABASE RESULTS 

ID TP FP FN Se % P+ % TP% 

1 108 0 0 100.00% 100.00% 100.00% 

2 120 3 0 100.00% 97.56% 97.56% 

3 119 0 0 100.00% 100.00% 100.00% 

4 137 0 0 100.00% 100.00% 100.00% 

5 57 0 0 100.00% 100.00% 100.00% 

6 101 3 0 100.00% 97.12% 97.12% 

7 131 0 0 100.00% 100.00% 100.00% 

In this study, a comparison of amplitude was not 

possible because the sensors used in the databases were 

different and therefore, they had a different signal 

magnitude. Nevertheless, despite the variations in 

morphology between subjects and the measurement axis, the 

CTW was able to emphasize J-wave location accurately in 

most cases. Figure 5 graphically shows its robustness to 

motion artifacts for a representative chair database record 

(Fig. 5a), as well as for a bed database record (Fig. 5b), 

regardless of the differences in the measurement system. 

 

Fig. 5. Segment of a BCG signal with its CWT and ECG. a) Bed database 

record of subject “X1032”. b) Chair database record of subject #7. 

 

IV. CONCLUSION 
 

The detection of BCG waves can be a complex task to 

perform due to their changing morphology, especially if a 

reference signal such as the ECG is not being used. To 

reduce this complexity, we propose the use of continuous 

wavelet transform with splines, that allow to discard high 

amplitude and low frequency peaks present in BCG 

recordings due to baseline variations and mechanical 

interferences. 

a) 

b) 



The performance of the proposed algorithm was found 

to be within the accuracy limits established by the AAMI for 

heart rate measurement, considering that it was calculated 

from the detection of the J wave in different BCG databases, 

achieving sufficient generality without focusing on a specific 

morphology as is generally done. 

As future aim, we will continue working on the 

development of a universal algorithm for automatic 

unsupervised detection of BCG waves, independent of 

sensor and measurement axis, to obtain and to analyze more 

data, to develop BCG technology and to generate medical 

devices. 
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