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Abstract — This work presents an improvement to a linear model 

obtained by Bayareh et al. in 2017, by training a single layer 

Perceptronand optimized by Gradient Descent. The objective of 

characterizing an IR radiometric sensor with a mathematical 

model is to predict the surface temperature of the body under 

study (e.g. diabetic foot) to perform quantitative thermography 

studies related to early detection through temperature difference. 

The data was obtained by measuring IR radiometric information 

on a phantom under a controlled environment. Subsequently, the 

predicted model was compared to the first characteristic equation. 

The model had an error of 0.14°C while the original model had an 

error of 1.28ºC regard an industrial purpose camera, previously 

calibrated.. The updated model could support the study of 

quantitative thermography with embedded systems whose sensors 

are not able to interpret temperature from factory settings, 

especially in studies focused on the difference of temperatures that 

support the diagnosis from the quantitative point of view. 

Keywords —IR medical thermography, Artificial Neural 

Network, Diabetic foot. 

 

I. INTRODUCTION  

The International Diabetes Federation has reported four 
million diseases each year due to Diabetes Mellitus (DM), 
which other millions more have medical complications, e.g. 
diabetic foot (DF) [1]. DF is considered a complication towards 
disabling due to lower limb amputation as a consequence of 
neuropathy, vascular insufficiency, infectious process, or a 
combination of these factors [2,3]. Early identification and 
medical therapy of the DF could avoid several surgical 
interventions, the most common is the amputation below the 
knee joint as a preventive measure [4]. Infrared thermography 
(IRT), contactless and non-invasive technology for superficial 
temperature detection, is a revolutionary and modern method 
for medical support and diagnosis. [5–7]. The asymmetric 
temperature is a strong indicator of any pathology [8]. 
However, IRT is not a standardized approach that can't be 
widely acknowledged as a method of diagnosing without 
medical criteria.. The importance of quantification of clinical 

data is relevant to the understanding of the nature of thermal 
imaging, training, and interpretation [6]. 

IRT is based on the indirect measurement of the IR energy 
emitted by a body containing the minimum amount of heat, 
whose temperature is greater than absolute zero. The 
radiometric data is interpreted on temperature scales after data 
processing (i.e. IR radiometric processing). The results 
obtained from radiometric processing are generally interpreted 
as false-color images known as thermographic images. Recent 
developments in the production of electronic display chips 
enable the achievement of higher resolution thermographic 
images, which main advantage is real-time temperature 
measurement with relatively low-cost devices [9,10]. However, 
several low-cost technologies, usually, are not calibrated 
neither are capable of adjusting thermal parameters depending 
on the measured materials [11]. IR measurements are sensitive 
to environmental variations such as ambient temperature, 
relative humidity, and air flows [12]. Also, thermal 
backgrounds interferences may affect directly the 
representation of false-color images. 

The latter described factors, are not contemplated in this 
type of low-cost sensor. Therefore, performing calibration in a 
controlled environment that is dependent on the material 
emissivity is critical.. Thermal calibrations are carried out with 
a blackbody. Manufactures offer black bodies with a coating 
material as close as possible to perfect emissivity. According to 
Plank’s Law, a blackbody is an object that absorbs IR radiation, 
considered as an object with emissivity = 1 [13]. However, 
human skin emissivity is reported to be approximately 0.98 
[14]. Thus, employing a homemade blackbody is common 
practice with a value of approximately 0.98, similar to human 
skin emissivity [15–17].  

Temperature prediction by radiometric data processing has 
typically a linear nature, under a controlled environment 
[18,19]. The aim of an Artificial Neural Network (ANN) is to 
predict events or classifications being the simplest model a 
linear prediction without an activation function.This work 



 

 

presents an improvement to the temperature prediction through 
the linear regression with Perceptron method and Gradient 
descent optimization of the Long-Wave Infrared (LWIR) 
Lepton 2.5 sensor reported in [15]. The manuscript is detailed 
as follows. Section II describes the methodology background 
regarding thermal calibration, radiometric data processing with 
an ANN, and validation. Section III details the results of the 
comparison between both characterizations and the error 
regarding an industrial thermal camera previously calibrated. 
Finally, sections IV and V discuss and conclude the 
implementation of an ANN to obtain a linear model that 
predicts temperature from radiometric data for the study of the 
diabetic foot through temperature differences. 

II. METHODS 

A. Instrumentation features 

The data was retrieved with a low-cost (one-tenth the cost 
of traditional IR cameras according to the developers) 
development sensor kit Lepton 2.5 (Flir, OR, USA) for general 
purposes (Fig. 1). Lepton can be integrated into mobile 
technology such as portable prototypes as an IR sensor or 
thermal imager, as reported in [11]. Table 1 summarizes the 
thermal imager technical characteristics. 

Table 1: Lepton 2.5 LWIR thermal imager 

 

The retrieved information is a matrix with double type 
values, containing 14-bits data elements. Each matrix was 
obtained by a single capture during the thermal calibration, 
detailed in the next subsection. 

 

 
Fig. 1: Lepton 2.5 LWIR sensor embedded on a break-board. 

 

B. Thermal Calibration 

The objective of the thermal calibration was to obtain 
radiometric information with the Lepton sensor and thermal 
maps (in Celsius scale) with the Ti32 thermal camera (Fluke, 
Everett, WA, USA). The Ti32 equipment was previously 
calibrated with a gold standard thermometer. In this way, the 
radiometric information would be compared against each value 
obtained by the thermal camera. 

The calibration was performed with a black body 
(phantom). The phantom was a10 cm x 10 cm aluminum plate 
painted black with a matte texture. The phantom was placed on 
a thermo-static bath, illustrated in Fig. 2. The sensor and the 
thermal camera were placed 20 cm from the phantom. The 
emissivity of the thermal camera was set to 0.98 (resembling 
the emissivity of the skin). 

 
Fig. 2: Thermal phantom inside the thermostatic water bath. The setup ensured 
a controlled environment, in which the temperature and humidity were 
controlled, and air flows were avoided.  

 

The thermal bath was set from 22°C to 44°C in 2°C steps 
and a phantom stabilization time of 2 min. 

 

 

C. Data analysis 

The IR data and the superficial temperature were measured 
on the surface of the phantom with a homogeneous distribution 
(Fig. 3). The dataset consisted of 948 different values, in which 
each vector was paired regard the warmest spot (i.e. the highest 
temperature was paired with the highest raw value). IRT 
radiometric data and IR images take as reference the warmest 
point inside the capture frame. This feature may lead to thermal 
artifacts if the environment is not controlled in the acquisition 
protocol stage, as reported in [20]. The temperature data were 
obtained from the IS2 files using a modified version of the code 
presented by Beauducel in [21], while the radiometric data were 
extracted with the code presented in [22]. The temperature 
matrices were considered as the target data while the 
radiometric information would be the input data to the training 
system. When comparing the set of data pairs, a linear nature 
was observed (Fig. 4), therefore, the only adjustable solution to 
the problem would be a linear regression (the simplest solution 
of an ANN). 

Characteristics Range Units 

IR sensor resolution 80 x 60 Pixel 
Pixel size 17 µm 
Thermal Sensitivity ≤ 50 mK 
Infrared Spectral Band 8 – 14  μm 
Voltage 2.8 V 
Refresh rate 8.6 FPS 



 

 

 
Fig. 3: a) IR images of the phantom inside the thermal bath. a) Sample taken 
with the Ti32 thermal camera, b) sample taken with Lepton 2.5 LWIR sensor. 

 

 
Fig. 4: Data-pair of temperature recorded by the Ti32 thermal camera and the 
Lepton 2.5 radiometric data on a 14-bit scale. Although a continuous straight 
line is observed, it is a series of 948 individual points. 

The proposed ANN is a single layer for the input and a 
single layer for the output, as a configuration for model linear 
responses [23]. Linear regression is considered an approach in 
this work due to the simplicity and nature of the retrieved data. 
Neural Networks are increasing acceptance for several tasks, 
such as prediction or classification [24]. The purpose is to fit a 
mathematical model describing a curve among several data 
points. The mathematical model will predict (interpolate) a 
result regarding a set of known values. The simplest model to 
design the ANN algorithm is known as Perceptron. It is inspired 
by the functioning of biological neurons and was proposed in 
1957 by F. Rosenblatt [25]. The model proposed is described in 
Fig. 5. The Perceptron is the basic computing unit used in 
neural networks, although it can also be used on its own as an 
AI algorithm in some cases.  

 
Fig. 5: Single layer Perceptron model without activation function. The output 
�� is a multiplicative factor summed with a bias that predicts the temperature 
as a function of the lepton sensor values. 

The Perceptron is a simplified version of a neuron that 
computes the weighted sum of all its inputs and then applies an 
activation function to give the result (equation 1). 
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where the inputs 	� … 	
  are the raw data retrieved from the 
Lepton sensor, ��  is the computed weights (multiplicative 
factor), �� is the bias and � is the output linear prediction. 

Despite the fact that the Perceptron model has an activation 
function for classification, it was not considered for this project 
since the goal is to obtain an equation that predicts temperature 
based on the sensor's radiometric data. For this type of 
regression problem, it is pursued a model that best fits a given 
data set in which the Perceptron model will be a straight line 
resembling the linear nature of the data set (see Fig. 4), 
described as a gradient line in equation 2. 

� � � ∙ 	 � � (2) 

In order to evaluate the performance, it is necessary to 
determine if the model predicts the target with relatively 
acceptable accuracy. The objective is to find weights and a bias 
of the model in equation 2, that minimize a loss function. This 
data is useful for computing the error of the model. In 
regression methods, the most commonly used loss function is 
the Mean Squared Error (MSE), described in equation 3 [24]. 
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where N es the number of the dataset, ���  is the prediction 
computed regarding the dataset, and ��  is the ground truth 
value. 

The MSE data is useful to find the best results that fit the 
correct model. Gradient descent is an optimization method for 
computing a local minimum of a function based on MSE data. 
The latter method iterates the results in the opposite direction 
of the gradient until a minimum is computed (Fig. 6) [26]. 



 

 

 
Fig. 6: Gradient descent model. The red circles indicate the local minimum after 
each iteration.  

The Gradient Descent algorithm is described in Fig. 7. The 
algorithm was programmed in Python 3.0 based on the Keras 
and TensorFlow libraries [27,28]. 

 
Fig. 7: Gradient descent algorithm flow chart. 

 

D. Validation 

The validation was performed by comparing the radiometric 
database and temperature matrices taken at the feet of 15 
volunteers presented in [29]. The volunteer selection conditions 
neither considered age, gender, or background of DM, nor 
visible alterations on the foot, since the objective at this stage 
is to characterize the Lepton sensor to the thermal camera. Each 
volunteer was placed with the bare feet as steady as possible. 
The feet rested over support as depicted in Fig. 8. The thermal 
camera was placed 92 cm regard the soul of the feet, while the 
Lepton sensor was placed at 40 cm, which is the recommended 
focal distance to obtain full-frame capture of the object of 
interest. 

 
Fig. 8: Volunteer samples IR images. a) False color image sample taken with 
the Ti32 thermal camera, b) IR image reconstructed with radiometric data of 
the Lepton Sensor. 

The temperature differences were computed comparing the 
temperature matrices obtained between the Ti32 thermal 
camera and both regression models, reported in [15] and the one 
obtained with the Perceptron method.  

III. RESULTS 

The optimized weight and bias calculated with the 
Perceptron and Gradient Descent method is presented in 
equation 4 with an R = 0.99. 
 

��	� � 0.044	 � 323.73 (4) 

The last MSE value retrieved after the optimization step 
was 0.0203 with an initial weight w = 0.01 (see Fig. 9). 



 

 

 
Fig. 9: Gradient Descent algorithm updates the weights of the model in the 
direction that minimizes the loss function. 

Once the model was optimized, the equation was applied to 
the Lepton radiometric arrays to retrieve a temperature matrix 
that describes the superficial temperature measured. The data 
were compared in 9 specific points where the feet can prone to 
loss of sensation according to the filament examination, 
depicted in Fig. 10 [30]. 

 

 
Fig. 10: Common zones for developing ulcers, according to the filament 
examination for diabetic foot detection. 

 
Fig. 11 and Fig. 12 presents the absolute error computed 

between average values of the first regression model (equation 
5) vs. the Ti32 and the ANN model vs. the Ti32. The 
temperature values were retrieved from 36 temperature arrays. 
Table 2 resumes the average error for both sets, as the standard 
deviation. 

 
� � 1 % 10&'	� � 0.2604	 �  1157.7 (5) 

 
 
 
 

Table 2: Comparison between the linear regression model and the Perceptron 
optimized model. 

 Original model 
Perceptron linear 

regression 
Average absolute 

error [°C] 
1.28 0.14 

Standard 
deviation 

0.27 0.02 

 

 
Fig. 11: Absolute error for the first regression model in [15]. The blue line 
represents the absolute average error (error µ = 1.28°C) while the vertical line 
represents the standard deviation (σ = 0.27). 

 
Fig. 12: Absolute error for the Perceptron linear regression. The blue line 
represents the absolute average error (error µ = 0.14°C). The standard deviation 
is imperceptible due to the scale standardization (σ = 0.026). 

 



 

 

IV. DISCUSSION 

The results proved to have a significantly less error than the 
mathematical model in [15] based on an ANN  to obtain a linear 
regression The results obtained in this work could not only be 
due to regression with significantly more data (23 values vs. 
948 values) but also due to a characterization under better-
controlled conditions, involving robust temperature 
measurement equipment such as an industrial purpose thermal 
camera previously calibrated with a gold standard thermometer. 

However, the optimization of the linear model with the 
Gradient Descent method contributed to have an absolute error 
of less than half a degree Celsius concerning the Ti32 
equipment. Although this mathematical model does not 
improve the resolution of the measurements due to the intrinsic 
characteristics of the Lepton sensor, it can now provide more 
accurate measurements, especially since it has been used in 
several studies related to the diabetic foot to understand the 
physiological changes from a quantitative point of view 
[31,32]. 

It is expected that this paper contributes to quantitative 
thermography with portable embedded systems employing 
low-cost sensors and development kits; particularly, when the 
sensor has a linear response. Several works have addressed 
problems of medical thermography from nonlinear approaches, 
in which the use of ANN training is an optimal solution 
[16,33,34]. It is well-known that there are discussion groups 
and forums where a way to calibrate this type of technology for 
different purposes is being actively discussed [35]; particularly 
for our case is the early detection of diabetic foot studies. 

V. CONCLUSIONS 

A basic ANN (linear regression by Perceptron) training 
method was presented in this work to obtain a mathematical 
model. The model corresponds to an improvement of the 
characteristic equation previously described by Bayareh et al. 
in [15] for the Lepton 2.5 sensor to perform quantitative 
thermography studies in the early detection of diabetic foot. In 
this way, the sensor could retrieve radiometric information 
extracted in 14-bit values to predict temperatures maps in the 
Celsius scale, exclusively for skin surface temperature 
scanning. The linear model obtained in this work presented an 
average error decrease of 0.14°C concerning the Fluke Ti32 
industrial-purpose thermal camera, while the original model 
had an average error of 1.28ºC.  

 
Although the model obtained by the Perceptron method and 
optimized by Gradient Descent had a better performance than 
the original model, the characterization conditions were 
significantly improved concerning the first work. The new 
model could be used in the future to improve segmentation 
based on temperature difference, due to the improvement of the 
accuracy in a low-cost and portable LWIR radiometric sensor 
such as Lepton 2.5. The latter prototype was build in 2017 
under a budget of $350 USD, which is a 85% cheaper than the 
model Ti32. As a perspective, the improvement of the 
resolution is contemplated with the implementation of the 

Lepton 3.5 sensor, the same sensor that has been used under the 
same objective in [36].  
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