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Abstract—Much interest has arisen in the problem of 
automatic video detection of small low contrast floating objects on 
a sea surface. The Modified Matched Subspace Detector (MMSD) 
has been recently proposed for detecting a barely discernible 
object in an agitated sea surface. MMSD uses the intensity 
difference between the sea and the object at relatively high 
frequencies.  In the literature the performances of this detector has 
been evaluated using only a sea model (additive Gaussian 
background clutter). In this paper we realize a comparison 
between classical Matched Subspace Detector (MSD) and MMSD 
using real sea images with synthetic model of the reflections from 
floating objects. This paper investigates the comparative MSD and 
MMSD performance, provided that the energy reflected from the 
object is equal to the energy reflected from the sea. The paper 
considers the dependence of the detection probability with a fixed 
probability of false alarm on the difference between the average of 
reflections from the sea surface and from a floating object at the 
different MMSD parameters and standard deviations of 
reflections from the object and the sea surface.   
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I. INTRODUCTION 
Ship-based automatic video detection of small floating 

objects on an agitated sea surface remains a hard problem. Many 
detectors based on background subtraction have appeared to 
solve the detection in fluctuating backgrounds, as designed in 
[1] where neighboring pixels around a pixel are used to filter the 
disturbances that could affect a single pixel, which in a 
fluctuating background does not occur. The work [2] compares 
background subtraction with methods which consider temporal 
and spatial correlation, showing that those methods outperform 
the background subtraction when they are implemented in a 
fluctuating background. The works like [3] tried to improve the 
Mean Subtraction Filter (MSF) by designing the called Modified 
Mean Subtraction Filter (MMSF), but in all cases the results 
indicate that a high signal-to-background ratio (SBR) is required 
to achieve the high quality detection. The previous works [1], 
[2], [3] perform a filtering to reduce the background clutter or 

improve the target; however, to achieve detections with low 
SBR it is necessary that the filters act to improve the target and 
reduce the background clutter. Another type of the target 
detection algorithms is based on a statistical hypothesis test that 
is used in the case of a heavy dynamic background environment 
[4]. The well-known matched and matched subspace filters [4] 
are such algorithms. Several papers have addressed adaptive 
detecting schemes, such as the detection algorithm [5], adaptive 
generalized likelihood ratio test (GLRT) algorithm [6], and 
adaptive subspace detector (ASD) [7]. Usually, the detector 
estimates the local mean of background and then subtracts this 
value from a signal of each pixel. Assuming that the presence of 
a target changes the background power, the work [8] created the 
Modified Adaptive Subspace Detector (MASD) which 
combines ASD and adds a term that increases the dataset power 
when dark target is present. MASD and ASD are used by [9] to 
process images. 

An optical detector for the maritime environment must be 
able to cope with an almost limitless set of scenarios. Aspects 
that can influence the performance of an optical detector include 
a water splashes, white caps on waves and sensor motion. The 
combination of these factors places the implementation of an 
optical detector in the maritime environment firmly in the 
domain of a “difficult problem”. 

The common drawback of the published papers is the 
assumption that the background and channel noise are almost 
Gaussian processes without taking into account the above 
features of reflections from the real sea surface. In contrast of 
published papers [9, 10], this paper uses real images of the sea 
surface (under various conditions), on which an artificial object 
model is placed. In this case it is possible to change the 
difference between statistical parameters of the object and sea. 
The aim of this paper is to study the quality of two detectors 
(MSD and MMSD) when detecting low-contrast floating 
objects. The value of the contrast between reflections from the 
sea and from an object is understood as the values of difference 
of statistical estimates: average and standard deviation. The 
paper studies the dependence of the detection probability at a 
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fixed false alarm probability on the difference between the 
average and standard deviations. Special attention is paid to the 
analysis of the quality of detection at the same average intensity 
of reflections from the sea and from the object. We show the 
advantage of the MMSD that allows to detect small floating 
objects on an agitated sea surface even with the same average 
and standard deviation of the reflected signals from the sea 
surface and the object.  

II. MODEL OF REFLECTIONS FROM A FLOATING OBJECT 

       In this paper, unlike the previous ones, real videos of the 
sea surface will be used, in which an artificial model of a 
floating object is inserted. This approach allows you to change 
the parameters of the object model in order to assess the quality 
of detection for various types of objects. This section is devoted 
to the description of the used floating object model. The image 
to be analyzed is divided into square sub-images of size (K×M), 
which are analyzed in order to detect the object in them. We 
assume that the multipixel object of size (N×L) may be present 
completely anywhere in the sub-image of size (K×M).  
The useful signal is modeled as a two-dimensional matrix 
(N×L), where N indicates the number of rows and L the number 
of columns. The signal model is a deterministic process 
unknown a priori. It is assumed that the floating object is solid 
and therefore its vibrations on the sea surface and the 
corresponding light reflections are limited to sufficiently low 
frequencies compared to reflections from the sea surface. The 
signal model of the object of r-th column-vector of the sub-
image is represented by: 
                                 ,          (1) 
where r = 1, 2, …, L,  is the object mode matrix 
(Vandermonde matrix) with discrete complex exponential 
elements: 

                    ,                       (2) 

 
where , the subscript n indicates the 
column number of the matrix H and the harmonic number n = 
0, 1, 2, …, N-1. The variable i indicates the row number of the 
matrix H and the value at discrete time i = 0,1, 2, …, N-1. N is 
the number of values in each column, j=√(-1). The unknown 
parameter θr is the amplitude vector of the harmonics that 
locates the deterministic object signal in the signal subspace 
spanned by the p columns of a known target mode matrix. 
Taking into account that in real videos the power of the target 
fluctuates θr is selected like a column vector with random 
values. It is used the uniformly (between zero and one) 
probability density function for this random value. The vectors 

 are grouped in a matrix with L columns which form the 
multipixel object.  

III. PROBLEM FORMULATION AND DETECTORS 
We will assume that the floating object model has 

dimensions (N×L) and the window in which the detection is 
performed has dimensions (K×M). Then in the case of N=K and 

L=M we can represent two statistical hypotheses  and  for 
the case of floating object detection in the sea:  

                                     (3)                                                          

where  is the background (sea) 
vector,  is the channel noise 
vector,  is the object unknown 
deterministic floating object vector. In this paper we assume that 
the value of p will always be less than K, since the floating object 
is a solid object, therefore, its fluctuations do not contain high 
frequencies, instead, the sea surface is about liquid, therefore, 
reflected light frequency can be high enough. We define the K×p 
matrix  and its corresponding object 
subspace Hs , which is the span of , where  

We next define the K×(K-p) 
matrix  and its corresponding 
subspace , which is the span of . There is no 
energy from the object in this subspace. We assume that  and 

 are, respectively, full rank and that  Let Hs be 
K×p mode matrix with columns that contain the orthogonal basis 
vectors that span the object subspace, p<K. The object signal 

is the deterministic unknown signal of interest 
which belongs to a known subspace Hs  of size K×p, where the 
abundance vector θ (size p×1) is unknown. The orthogonal 
subspace  contains the columns from p to K-1.  
      We consider two detection algorithms synthesized by the 
GLRT method. The first algorithm (well-known MSD) is 
synthesized under the condition that the shape of the signal from 
the object is unknown, but the spectral frequency range is 
known. The second algorithm (MMSD) is recently synthesized 
under the condition that the frequency range is known in which 
the received signal power depends on the statistical hypothesis. 
The MSD is: 

                      = ,                              (4) 

where P is the orthogonal projection matrix onto the object 
subspace : P= ( )-1 , η is a threshold to be chosen 
according to the desired false alarm probability. The MMSD is: 

TMMSD= .                    (5) 

where = I-P  is the projection matrix onto the subspace 
orthogonal to object subspace,  is the background variance of 
the pixel, b is sensitive factor.  

IV. COMPARATIVE PERFORMANCE ASSESMENT AND 
DICUSSION 

In the following, we assess the performance of the MMSD 
and MSD both in terms of false alarm probability (Pfa) and 
detection probability (Pd). This paper uses 2D processing, i.e. 
for each frame, the detector makes an automatic decision on the 
presence or absence of an object. Theoretical analysis of the 
MSD shows that the MSD is sensitive to the ratio of the power 



of reflections from the object to the power of reflections from 
the sea. It is known that the signal power depends on the average 
and standard deviation of this signal. It is also that if the 
difference between the averages or standard deviations of the 
object and the sea decreases then the probability of the object 
detection decreases too. The MMSD is sensitive to the received 
signal power change inside the orthogonal subspace . 
Further in this section it will be shown the experimental 
outcomes that have confirmed the high quality of the MMSD. In 
Figs. 1 and 2 show the power spectra of reflections from a 
typical object and the rough sea surface. The object has intense 
reflections at low frequencies (up to 1-2 Hz at 100 units), and 
the sea surface has intense reflections up to 7 Hz. Using these 
data, the value of the parameter p is selected in both detection 
algorithms. 

 
Fig.1. The small boat reflection average spectral density. 

 
Fig.2.The sea reflection average spectral density. 

                  
Fig.3 The sea with real floating object (marked with a red 
outline) 

Fig. 3 shows the surface of an agitated sea with a poorly visible 
object. In practice, making a video with floating objects that 
have given parameters of mean and standard deviation, size, 
color, etc., is a very difficult task that requires large material 
costs. Therefore, in this paper, an artificially created floating 
object is used on the surface of a real sea, in which any 
parameters of the floating object are programmatically changed.   
(Dataset https://n9.cl/cce21). 

                       
 Fig.4. Object model example              Fig.5. Object real example 

 
Fig.6. Detection probability vs difference between object 
average and sea average, NBR=0.005, OV/BV=1, p=8. 

  
Fig.7. Detection probability vs difference between object 
average and sea average, NBR=0.005, OV/BV=1, p=4. 

  
Fig.8. Detection probability vs difference between object 
average and sea average, NBR=0.1, OV/BV=1, p=8. 
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Fig.9. Detection probability vs difference between object 
average and sea average, NBR=0.1, OV/BV=4, p=8. 

Figs.4 and 5 show an example of an object model and an 
example of a real object (the part of the Fig.3). Comparing these 
images shows some difference between the model and the real 
image, but their averages and standard deviations are the same. 
We have experimentally evaluated the MSD and MMSD 
performance in the presence of the artificial object on the real 
sea surface (the distance about 200 m). The dimensions of the 
object were 10x20 pixels, the average power of the reflections 
and the standard deviation changed during the experiments. 
Additive channel noise with a given intensity has been added to 
all images. The detectors analyze 300 pixels (10x20) at each 
frame and, for each frame, make a decision on the presence or 
absence of an object by comparing the result of processing 300 
pixels (one number is formed) with a threshold. If the threshold 
is exceeded, a decision is made on the presence of an object in 
the 10x20 section. To implement the detection, we first selected 
a section of the sea image without an object, in which the 
detections were carried out in order to establish a threshold 
providing a false alarm probability of 0.01. In the selected area, 
the detection process was implemented 1000 times in 1000 
frames. The output values of the detectors (1000 numbers) were 
analyzed and ordered in ascending order, and a threshold equal 
to the tenth of the maximum was assigned. Obviously, it is 
difficult to implement high-quality detection of an object with 
statistical parameters identical to the sea with detectors 
synthesized using statistical methods. Therefore, in this paper, 
the dependence of the detection probability on the difference 
between the mean values of the sea and the object was 
investigated for various ratios between the standard deviations 
of the object and the sea. The ratio of the channel noise power 
to the sea power also changed. All experiments and calculations 
were performed for a false alarm probability of 0.01. 

Figs. 6 shows the results of experiments, where NBR is the 
ratio of the power of the channel noise to the power of reflections 
from the sea, OV/BV is the ratio of the dispersion of the object 
to the dispersion of the sea, p is the maximum frequency of the 
object, and b is the sensitivity coefficient of the MMSD. The 
graphs show that the minimum detection probability 
corresponds to the minimum of the difference between the 
averages object and the sea for both MSD and MMSD. Note that 
the standard deviations of the reflections from the object and the 
sea are the same. In this case, only MMSD provides high-quality 
detection at an appropriate value of the sensitivity coefficient b. 
This is explained by the presence of the second term in the 
MMSD algorithm, which calculates the logarithm of the ratio of 

the power of reflections from an object to the power of 
reflections from the sea in the subspace    of sufficiently 
high frequencies. In practice, the surface of objects has a quasi-
uniformly distributed intensity of reflections and therefore their 
spectrum is concentrated around zero frequencies. The sea 
surface has a significant irregularity in the intensities of the 
reflections. The reflections from the agitated sea have intense 
higher frequency components (Figs.1, 2). To compare the 
detection quality versus the spectral width of the object p, Fig.7. 
Analysis of the curves shows that with a decrease in the value of 
p, the quality of detection increases. In the paper, the influence 
of channel noise was assessed. In Fig. 8 the value OV/BV=0.1 
and it is many times higher than this ratio for Figs. 6 and 7. 
Comparison shows that an increase in channel noise 
significantly degrades the quality of detection. Under conditions 
of intense channel noise, the detection quality is improved if the 
object has a higher dispersion than reflections from the sea 
(OV/BV=4)]. This is shown in Fig.9. 

V. CONCLUSION 
1. MMSD allows detecting low-contrast floating objects. 
2. In the case of a high-contrast object, the first term of the 
algorithm (5) ensures high detection quality. The second term 
in (5) is sensitive to the difference at relatively high frequencies 
of the energy from the sea and from the object. 
3. To implement detection using MMSD, an experimental 
estimate of the spectral width of a floating object is required. 
4. The assessment of the quality of detection of MSD and 
MMSD carried out in this work using real images of the sea 
surface confirms the results obtained on the basis of the model 
of reflections from the sea surface as a Gaussian process [10]. 
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