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Abstract— An objective evaluation of voice quality using 
phoniatric parameters to analyze acoustic signals generated 
during phonations has been developed. The system used the Voice 
Handicap Index questionnaire to quantify the perception of the 
vocal capacity of people, complemented with the measurement of 
voice acoustic signal parameters obtained from sustained 
vocalizations. The parameters were statistically evaluated, and 
then a systematic analysis of seven classifiers with the preselected 
parameter was done with and without PCA, KNN, BPNN, and 
SVM obtained the best performance with a mean accuracy of 
97.4%, 96%, and 94.7%. The proposal can be used to determine 
alterations in the production of the voice for medical diagnostics. 
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I. INTRODUCTION  

The voice is the fundamental tool of human communication. As 
a consequence of technological communications, the use of 
voice and vocal disorders have increased, which occur in 3 to 
9% of the population. [1]. Among the most affected working-
age people, who use the voice as a work tool, are the teaching 
professionals, vendors, speakers, actors, singers, and speakers. 
Current commercial instruments in phoniatrics do not have a 
complementary objective evaluation of voice quality as a 
reference in the tests that interpret the state of phonation 
structures[2]. Due to this, the diagnosis of phonological 
medicine is based mainly on a set of clinical studies derived 
from evaluation protocols that use invasive techniques, which 
cause discomfort, fear, and sometimes injury to patients. In 
addition, these evaluations are carried out in specialized 
laboratories with limited access, which restricts the early 
detection of voice anomalies through fieldwork[3]. 
 
 
 
 
 

 
 
 
 
 
 
 
The analysis of voice for diagnosis was studied for several 
conditions such as continuous speech[4] or vocalizing a 
word[1][5], considering gender and age[2], self-perception[3], 
and even differences due to languages[5] and emotional 
conditions[6].  Pishgar et al. present a well-done summarize of 
research in voice diagnosis [7]. Voice signal is a complex signal  
that has to be analyzed with a multiparameter approach to 
identify pathological cases among healthy cases[8]. Several  
approaches for automatic searching, such as convolutional 
neural networks, SVM, KNN, CART, logistic regression, and 
even linear discriminant, have been used for classifying health 
and pathology differences[4][7][9][10]. The results showed that 
according to the sample size, type of diseases, number of 
parameters, and specific computational requirements, the 
performance could range from 60 to 92%. So a systematic 
review of the parameters and classifiers under identical 
conditions for this phoniatric system has to be part of the 
designing model. 
 
This paper presents the development of a system based on 
sound analysis for the early detection of anomalies in the voice. 
The Voice Handicap Index questionnaire is applied as a first 
tool to quantify the perception of the vocal capacity. Then, this 
information is complemented with the measurement of voice 
acoustic signal parameters obtained from sustained 
vocalizations. This data set was analyzed and used to define a 
methodology based on classifiers to detect alterations in the 
voice production for diagnostics. 
 
 
 
 

II. METHODOLOGY 

The acoustic signal is a parameter that can be used to measure 
voice disturbances objectively.  
 



Its recording is non-invasive and allows establishing a 
diagnosis, helps in therapy monitoring, and generates lines of 
research in the multidimensional modeling of the phonatory 
system.  
 
Questionnaire 
 
The Voice Handicap Index-10 (VHI-10) questionnaire was 
adopted to complement the information provided by measuring 
anatomical and physiological variables. The tool is based on a 
self-assessment to quantify the perception of vocal 
disabilities[11]. 

A. Analysis Parameters 
 

The fundamental frequency (F0), Shimmer, and Jitter values 
were considered the most used parameters for diagnosing a 
pathological voice. In addition, the harmonic-noise ratio HNR 
and the smoothed Cepstral peak were determined [1][5][7][8]. 
The F0 is the parameter related to the natural physical 
characteristics of the phonation structures. The vibration of the 
vocal cords is evaluated with the Jitter index, measuring the 
regularity of the fundamental frequency and the duration 
variability of the wave in consecutive cycles, and with the 
Shimmer index, evaluating the stability of the sound system by 
measuring the variability of the amplitude of cyclic sounds.  
The Harmonic-Noise Ratio (HNR) allows detecting larynx  
problems related to vibrating the vocal folds due to abnormal 
growth or palsy. These problems can generate air leaks that, in 
turn, cause noise due to turbulence. 
With the use of Smoothed Cepstral Peak Prominence (CPPS), 
a higher discrimination power has been obtained, using both 
sustained vowel / a / and sentences. Therefore, it proves more 
diagnostic accuracy in detecting dysphonia in the Spanish 
language [5][7]. 

B. Study cases 
 

In a sample of 19 male patients with pathologies of different 
origins and 19 healthy male subjects, sustained phonations of 
the vowel / a / were processed.  In pathological cases, the 
physician selected the subjects sample according to the 
diagnosis, in a range of 21-40 years old, with a mean and 
standard deviation of 31.46 ±5.9. The recordings were made by 
a phoniatric specialist in a clinical appointment with the consent 
of the patient and using the traditional methods. The considered 
diagnosed cases were functional pathologies, that is, 
pathologies caused by injuries to speech organs or by 
congenital causes. The pathologies were caused by poor vocal 
management, possible nodule formation, or transient 
alterations.  Then a set of eight healthy male subjects were used 
for the final integration test. All healthy subjects were  21-40 
years old and signed a written consent after being informed 
according to the Declaration of Helsinki. 

C. Record of phonations 

An electret microphone was used, with a quasi-flat frequency 
response in the 20 to 20 kHz range and a typical sensitivity of -
44 dB. The device was placed in a mask with a low-pressure 

seal (Hudson RCI, China), in front and 4 cm from the mouth of 
the study subject, and connected to the amplifier circuit 
suggested by the manufacturer for MAXIM MAX6666 device. 
The ESP32 microcontroller (Espressif Systems, Shanghai) was 
used, including an A / D converter with a sampling frequency 
of 8 kHz for data acquisition. It is based on a 32-bit Tensilica 
Xtensa LX6 microprocessor, low power consumption, and 
high-frequency clock (typically 160 MHz). Then a MicroSD 
Card Adapter was used for data storage, with a Serial Peripheral 
Interface (SPI) communication interface and a microSD 
memory with 2GB storage capacity. Finally, a Graphic User 
Interface (GUI) was implemented to interact with the user. This 
interface includes questionnaires and clinical data collected 
from the subjects. 
 
D. Acoustical parameters 

 
From the widely used clinical tests and the Praat software, 15 
parameters were obtained: the fundamental frequency, Jimmer 
and Shitter to evaluate the disturbances in amplitude and 
frequency, the HNR factor to assess the harmonic-noise 
relationship, and spectral measurements [1][7][12]. 
 
E. Statistics 

 
Using the Graph Pad PRISM® program, the values of the 
parameters obtained were subjected to a normality analysis. 
Subsequently, a Mann Whitney test was performed individually 
to know the dispersion of the data and then to determine if there 
were significant differences between the data of healthy people 
and those with some pathology. Finally, a systematic 
multidimensional two-way variation (Two-way ANOVA) test 
was performed to check the effectiveness of the parameters 
according to whether they presented statistically significant 
differences between the group of healthy and pathological 
subjects. 
 

F. Selection of the classifier 

 

After the statistical analysis, a neural network was implemented 
in MATLAB® using the groups identified. In this case, deep 
learning networks were non considered because of the size of 
the dataset. So a neural network consisting of the input layer 
with data of the thirteen parameters obtained from the analysis 
in the software Praat, a hidden layer of 13 neurons, and a layer 
with binary output were proposed. The database was divided 
into 70% for training, 15% for validation, and 15% for tests, 
randomly selected. The evaluation was carried out using 
confusion matrices to evaluate the mean accuracy of test, 
validation, and training stages repeated ten times.  
Due to the number of attributes to be considered for the 
classification and the reduced number of samples available,  a 
pertinence and effect test was carried out. Principal Component 
Analysis (PCA) technique was used  to define the number of 
variables that provide more information under an automatic 
classification scheme and its impact on training time and 
evaluation time to be used online. Performance among the 
seven most common classifiers in the automated classification 



domain was compared. Table 1 shows the twenty-one variants 
of the classifiers tested to identify the best behavior according 
to the most significant hyperparameters.  

 

Table 1. Test of seven classifiers with main differences. 

Test Classifier Kernel  

1 Support Vector 

Machine (SVM) 

Linear  

2 Cuadratic  

3 Cubic  

4 Medium Gaussian  

5 Coarse Gaussian  

6 Logistic regression   

7 Trees Fine (Levels=100)  

8 Medium 

(Levels=20) 

 

9 Coarse (Levels=4)  

10 Discriminant Linear  

11 Cuadratic  

12 Naive Bayes Gaussian  

13 KNN Fine (K=1, euclidean distance) 

14 Medium (K=10, euclidean 

distance) 

15 Medium (K=10, cosine distance) 

16 Medium (K=10, cubic distance) 

17 Ensemble Boost trees  

18 Bagged trees  

19 Subspace discriminant 

20 RUS Boost  

21 Subspace KNN  

 

 

The robustness of the method was determined using a cross-
validation test with k = 10 folds, and the evaluation was done 
with accuracy and misclassification cost. In all cases, the 
average value, the standard deviation, and the maximum and 
minimum were obtained to establish the best option for method 
and conditions. 
Finally, the method conformed with the selected classifier, the 
questionnaire, the vocal recording option, and the clinical 
parameters extraction was tested with eight healthy subjects. As 
was expected, the result was that any of them required clinical 
attention. 
 

III. RESULTS 

                  A.    Acoustic analysis 

The acoustic analysis of vocalizations obtained from 19 
subjects with pathologies from different origin sites and 19 
healthy subjects was performed. The values of the selected 
parameters are shown in Table 2 with the results of the T-
Student post-test. Firstly, the sample was sectioned between 
healthy subjects and subjects with some pathology to obtain the 
ranges in which each group was. A difference was observed 
between arithmetic means of the parameters, in addition, that 
the standard deviation of each parameter was higher in the case 
of subjects with pathology in contrast to healthy subjects.  

                B.    Statistical analysis 

 A systematic multidimensional statistical analysis was carried 
out with the GraphPad PRISM® program. All parameters were 
separated into groups considering the ranges and units of 
measurement. The results of the two-ways ANOVA comparing 
by groups are: 1) In group one, the fundamental frequency (F0) 
value was raised above 350 Hz in patients with pathologies. 2) 
In group two, the harmonic-noise ratio values obtained from the 
acoustic signals of healthy people are concentrated below 10 
dB and above 15 dB in subjects with pathology. 3) Regarding 
the CPP, the value is maintained above 13 dB in healthy people 
cases, unlike concentrated values between 5 dB and 10 dB in 
pathological cases. 4) The standard deviation of group three 
harmonic-noise ratio (SD HNR) showed no statistically 
significant differences. This parameter measures dispersion 
over the central tendency, and the previous ones were values of 
central tendency. In contrast, in healthy cases, the standard 
deviation of the fundamental frequency did not reach a higher 
value than 10 Hz, unlike above 100 Hz values in patients with 
some pathology. 5) In group five, the local Shimmer measures, 
apq3, apq5, and dda, which are the measures of disturbance of 
the amplitude of phonation, showed different distributions, 
which were helpful for classification since a difference in the 
concentration of values of the healthy and pathological groups 
was observed. In general, pathological subjects tend to show 
more variation in the magnitude of phonation, and these 
parameters allow an evaluation of their low change for both 
states.  
6) In the Local Jitter, rap, ppq5, and ddp measurements of group 
six, the fundamental frequency variability between the two 
health states might be helpful in automatic classification since 
there was a difference in the concentration of the values of 
healthy groups and pathological ones. 7) In group seven, the 
distribution of the absolute local Jitter was observed. Here, the 
highest concentration of healthy subjects was maintained below 
the upper limit reached by patients with pathology. However, 
the data dispersion did not show a statistically significant 
difference with the used sample in this ANOVA study.  
8) Finally, in group eight, the local Shimmer dB was 
determined.  It was observed that the maximum value obtained 
from the analysis of the signals of healthy subjects was 
positioned a little more than 1 dB, unlike patients with a 
pathology that can reach values greater than 1.5 dB. However, 
the distributions overlapped, which indicates that the groups 



cannot be linearly separable. According to these results, thirteen 
parameter values were selected and proposed as input elements 
for the classifier's test, looking for a robust parameter 

combination for functional pathologies. The standard deviation 
of Fo and absolute local Jitter were discharged. 
 

Table 2. Selected parameters values obtained from acoustic analysis in Praat with t-student p <0.05 comparison. 
  

Parameter Healthy Pathologic t-student  

                             Mean Σ Mean Σ p-value 

Fundamental 

frequency F0 

(Hz)  

127.2 14.19 183.7 77.41 0.0075 

F0 Standard 

deviation (Hz)  

1.526 0.827 26.39 40.55 0.0062 

Jitter local 

(%)  

0.395 1.713 1.7132 1.507 0.0001 

Jiter local 

absoluto (μs)  

31.47 113.8 113.82 128.1 0.0118 

Jitter rap (%)  0.22 1.01 1.0101 0.94 0.0002 

Jitter ppq5 

(%)  

0.236 1.023 1.0228 0.889 0.0003 

Jitter ddp (%)  0.66 3.03 3.0304 2.819 0.0002 

Shimmer local 

(dB)  

0.397 1.567 1.5672 0.297 < 0.0001 

Shimmer local 

(%)  

4.382 18.01 18.01 3.833 < 0.0001 

Shimmer apq3 

(%)  

2.337 9.021 9.0209 2.081 < 0.0001 

Shimmer apq5 

(%)  

2.812 11.51 11.511 2.97 < 0.0001 

Shimmer dda 

(%)  

7.012 27.06 27.062 6.242 < 0.0001 

CPPS (dB)  15.98 8.529 8.529 2.721 < 0.0001 

HNR (dB)  18.89 6.415 6.415 3.655 < 0.0001 

HNR (dB) 

Standard 

Deviation  

3.257 2.776 2.776 0.608 0.0428 

                  C.   Classification test 

The best average performance with n = 10 training of the BPNN 
is shown in Table 3. In addition, Table 4 shows the statistics of 
the four best-optimized proposals under a cross-validation test 
with k = 10 folds. When a PCA method was previously applied 
to classification, the number of parameters was reduced from 
13 to 2, covering 99.3% of the total variance. However, a 
decrease in accuracy of 6.25 ± 2.47 was presented. The average 

cost in training time was increased by 4%, in a range of 14 to 
53 seconds, but the prediction time varied considerably 
according to the method used. 
 In general, without PCA, it has a range of 29-950 observations 
per second (obs/s), while with PCA, it was reduced to 29 to 130 
obs/s. This parameter was not calculated for the neural network 
in parts, but the training, validation, and testing process times 
were not greater than 28 seconds, using the 13 variables. 

 
 



Table 3. The best performing neural network and its configuration. 
  

Backpropagation Neural Network   CE %E Accuracy #epoch Time (s) 

Net:13-13-2; data set selection: aleatory with 

75%,15%,15% subsets; 

training method: Scales Descendent Gradient 

Max 10.72 27.78 100.00 54.00 28.00 

mean 4.72 4.69 96.01 28.70 10.31 

min 1.17 0.00 77.77 9.00 0.00 

sdt 3.42 8.95 7.27 17.94 10.19 

 
Table 4. Performance and configuration of the four classifiers with the best average accuracy and the configuration 

 

Model Method Accuracy 

(%) 

Missclassification 

cost 

PCA  Training 

time (s) 

Prediction 

speed (obs/s) 

K=1, distance metric=Euclidean, Distance 

weight=equal, Standardize data 

KNN 97.40 1 13/13, 100% 26.784 250 

K=10, distance metric=Euclidean, Distance 

weight=square inverse, Standardize data 

KNN 97.40 1 13/13, 100% 26.394 120 

Kernel=fine gaussian SVM, Kernel scale =0.9, 

box constraint level=1;2 classes one vs one, 

standardize data 

SVM 94.7 2 13/13, 100% 20.9 450 

Cosine KNN, K=10, distance metric= 

Minkowski (cubic), Distance weight=equal, 

Standardize data 

KNN 92.40 3 13/13, 100% 28.99 220 

On average, the classifiers that performed the best were KNN, 
BPNN, and SVM, with 97.4%, 96%, and 94.7%, respectively, 
without PCA. 
For KNN classifier, a greater dependence was observed in the 
adjustment of the hyperparameters (σ2 = 18.41) than with SVM 
((σ2 = 1.69) or BPNN (σ2 = 7.27). Although assemblies were 
tested, an average accuracy of 92.1% was obtained at best 
combination, but the high cost in response time and training 
time rises must be considered. 
Once BPNN was selected, a final test was done with eight 
healthy subjects. The maximum score of HIV-10 was 32% of 
the total score that could be achieved in this survey. As 
expected, results showed that no one required clinical attention. 
The general results are presented in Table 5. 

IV. DISCUSSION 

One of the aims of studying these anomalies in  voice 
production was to use as many parameters as reported in the 
clinic and then analyzed them systematically to select the best 
option to determine alterations in the production of the voice 
associated with medical diagnostics of functional pathologies. 
The first approach was with statistical analysis and then with 
automatic classification. Results are congruent with previously 

reported, and the statistic results could be used as a guide in the 
clinical examination in a non-laboratory study. 
If the priority is to perform automatic online classification of 
the parameters, the best option is SVM, without PCA, since up 
to 450 observations per second can be made, and the training 
time is also the shortest even though the classification 
percentage was 94% on average for this data set. If accuracy is 
a priority, the proposed KNN method reaches 97.4% average 
accuracy and is appropriate for online use. BPNN has training 
cost among the best; besides, once the best weights were found, 
the test time and computational requirements were minimal, so 
it was chosen as part of the phoniatric system and implemented 
in a visual interface for this proposal. The final integration test 
of the system with the group of eight healthy subjects shows 
consistency with the healthy training set shown in Table 5. 

V. CONCLUSIONS 

A non-invasive voice measurement system during phonation to 
detect early voice production anomalies was developed. The 
system is based on the analysis of sustained vocalizations, it can 
be used as a medical first-attention tool for fieldwork. In future 
work, a broad sample could be used or contrasted with the 
Spanish dataset if available. 

 

 

 



Table 5. Comparison of the mean and standard deviation of the test sample against previous results with the thirteen parameters 

selected. 

Parameters Pathologial Healthy Test 

mean σ mean σ mean σ 

F0 183.74 77.414 127.15 14.192 124.53 20.338 

F0 DS 26.39 40.55 1.526 0.827 3.6389 1.570 

CPPS 8.529 2.721 15.98 2.001 16.255 2.646 

HNR 6.415 3.654 18.895 3.397 25.813 2.765 

Shimmer local dB 1.5672 0.296 0.397 0.260 0.123 0.023 

Shimmer local 18.010 3.832 4.381 2.755 1.330 0.279 

Shimmer apq3 9.020 2.080 2.337 1.460 0.733 0.1742 

Shimmer apq5 11.511 2.970 2.811 1.889 0.814 0.181 

Shimmer dda 27.062 6.241 7.012 4.380 2.200 0.522 

Jitter ddp 3.030 2.819 0.66 0.354 1.637 0.560 

Jitter local 1.713 1.506 0.395 0.183 0.955 0.286 

Jitter rap 1.01 0.94 0.22 0.118 0.545 0.186 

Jitter ppq5 1.023 0.889 0.236 0.1 0.551 0.162 
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